Determination of the resonant frequency of microstrip antennas

Author(s):  
K. P. Ray ◽  
Girish Kumar
2020 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Carlo Boursier Niutta

A new approach for the nondestructive determination of the elastic properties of composite laminates is presented. The approach represents an improvement of a recently published experimental methodology based on the Impulse Excitation Technique, which allows nondestructively assessing local elastic properties of composite laminates by isolating a region of interest through a proper clamping system. Different measures of the first resonant frequency are obtained by rotating the clamping system with respect to the material orientation. Here, in order to increase the robustness of the inverse problem, which determines the elastic properties from the measured resonant frequencies, information related to the modal shape is retained by considering the effect of an additional concentrated mass on the first resonant frequency. According to the modal shape and the position of the mass, different values of the first resonant frequency are obtained. Here, two positions of the additional mass, i.e., two values of the resonant frequency in addition to the unloaded frequency value, are considered for each material orientation. A Rayleigh–Ritz formulation based on higher order theory is adopted to compute the first resonant frequency of the clamped plate with concentrated mass. The elastic properties are finally determined through an optimization problem that minimizes the discrepancy on the frequency reference values. The proposed approach is validated on several materials taken from the literature. Finally, advantages and possible limitations are discussed.


2014 ◽  
Vol 102 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Ali Akdagli ◽  
Ahmet Kayabasi ◽  
Ibrahim Develi

1990 ◽  
Vol 28 (3) ◽  
pp. 306-306
Author(s):  
Andreas Schulze ◽  
Peter Schaller ◽  
Jürgen Dinger ◽  
Dieter Gmyrek

Metrologiya ◽  
2021 ◽  
pp. 31-40
Author(s):  
V. K. Kachanov ◽  
I. V. Sokolov ◽  
A. A. Samokrutov ◽  
V. G. Shevaldykin ◽  
S. A. Fedorenko ◽  
...  

A through transmission impact method for measuring the sound velocity in the concrete cubic samples, which are used for determination of the concrete durability, is proposed. It is shown that for elimination of the surface wave influence on the measurement accuracy of the compact cubic sample resonant frequency the impactor and the receiving transducer should be placed on the opposite sides of the cube. Besides in some cases must be used multichannel through transmission impact method.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001078-001080
Author(s):  
Deepukumar Nair ◽  
Glenn Oliver ◽  
Jim Parisi

Organic coverlays are required to protect microstrip circuits in most applications. The presence of coverlay can potentially influence the performance of microstrip antennas. This paper describes the qualification of polyimide based coverlays for microstrip antennas both in 900 MHz and 2.50 GHz frequency bands. An Inverted F-shaped antenna fabricated on FR-4 dielectric is used as the test vehicle and two different coverlay materials are tested with respect to key parameters like resonant frequency, S11 bandwidth, antenna gain, frequency detuning, and radiation pattern. The data presented in this paper clearly indicates polyimide materials are well suited to cover microstrip antenna circuits with minimal impact on performance.


2019 ◽  
Vol 63 (4) ◽  
pp. 332-342 ◽  
Author(s):  
Yahiea Alnaiemy ◽  
Taha A. Elwi ◽  
Lajos Nagy

This paper presents a printed rectangular slot microstrip antenna array of two elements based on an Electromagnetic Band Gap (EBG) structure. The proposed EBG structure is invented to improve the isolation between the radiating elements for multiple-input multiple-output (MIMO) application. Single and two slotted rectangular microstrip antennas are designed on an FR-4 substrate with a dielectric constant (εr) of 4.3 and loss tangent (tanδ) of 0.025 with thickness of 1.6 mm. The proposed EBG structure is designed as one planar row of 24 slots. The proposed array performance is tested numerically using Computer Simulation Technology Microwave Studio (CSTMW) of Finite Integration Technique (FIT) formulations. The antenna performance in terms of reflection coefficient (S11), isolation coefficient (S21), radiation patterns, boresight gain and Envelope Correlation Coefficient (ECC) are investigated before and after introducing the EBG structure to identify the significant enhancements. The proposed EBG structure is located between the radiating antenna elements to reduce the mutual coupling of the proposed antenna array. The edge to edge separation distance of the proposed antennas is λ0/16, where the λ0 is the free space wavelength at 2.45 GHz. The simulated results show a significant isolation enhancement from –6 dB to –29 dB at the first resonant frequency 2.45 GHz and from –10 dB to –25 dB at the second resonant frequency 5.8 GHz after introducing the EBG structure to the antenna array.


Sign in / Sign up

Export Citation Format

Share Document